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Abstract
We discuss equilibrium and out-of-equilibrium dynamical properties of the spin
facilitated chain model. The two well known limiting cases of full asymmetry
and symmetry of the dynamical rules respectively lead to pure fragile and strong
glassy behaviours. A crossover from fragile to strong glassy behaviour at a finite
temperature exists for a large asymmetry. The tunable asymmetry, which plays
the role of an entropic barrier, allows the crossover temperature to be controlled.
Analytical predictions are confirmed by numerical simulations.

1. Introduction

The glass phase is as common in nature as the gas, liquid or solid ones. Most liquids,
when cooled sufficiently rapidly, avoid crystallization to form an amorphous, microscopically
disordered solid called a glass. Yet the dynamical behaviour of glasses is not well understood,
especially the relaxation time (or the viscosity) which increases by several orders of magnitude
when the temperature is lowered. Several years ago, Angell [1] proposed a classification of
glasses in terms of the shape of the logarithm of this relaxation time plotted against the inverse
temperature. Strong glasses are characterized by a linear behaviour or an Arrhenius law
and fragile ones by a highly nonlinear behaviour. Covalent glasses like SiO2 are prototypes
for strong glasses whereas polymers or complex molecules are prototypes for fragile ones;
however, some molecules like water fail to find a place in this classification, behaving as a
fragile glass just below the glass temperature and as a strong one for low temperatures [2, 3].

In this paper we will show that the combination of two relaxation mechanisms, one with
growing energy barriers and the other with a single energy barrier but also an entropic one,
may lead to this crossover from fragile to strong glassy behaviour when the temperature is
lowered. The entropic barrier, tunable with the asymmetry of the dynamical rules, determines
the crossover temperature. The fragile mechanism leads to a stretched exponential relaxation
with a temperature-dependent stretching exponent.

The paper is organized as follows: in section 2 we present the model and the dynamical
rules and we define our notations. In section 3 the relevant timescales are discussed for the two
different relaxation mechanisms. The crossover temperature is predicted. Some equilibrium
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properties are presented in section 4 and out-of-equilibrium ones in section 5. In each case,
numerical simulations confirm the analytical predictions. We conclude and discuss some
extension of the model in section 6.

2. Model

In the following, we consider the 1D spin facilitated model which has been introduced
by Fredrickson and Andersen [4] in its symmetric version and by Jäckle and Eisinger [5]
in its asymmetric version. Both models are based on the same Hamiltonian H = ∑

i si

of N non-interacting Ising spins si = 0, 1 in a uniform magnetic field h = −1. The
thermodynamical properties are trivial as a consequence of the non-interacting variables. For
example, the equilibrium energy (which is also the concentration of 1-spins or defects) is given
by ceq = 1/[1 + exp(1/T )], with T the temperature. Despite the trivial equilibrium properties,
interesting dynamical behaviour may be obtained by introducing constraints on the flipping
rates of the spins. The general constraint for the probability P(si) to flip the spin si , which
interpolates between the purely asymmetric and the symmetric models, is realized with [6]

P(si) = Pmetro(δE) [b si−1 + (1− b) si+1] (1)

where δE = 1 − 2si is the energy difference between final and initial configurations.
Pmetro(δE) = min(1, exp(−δE/T )) is the usual Metropolis probability (Glauber or heat bath
dynamics would lead to the same results). The second term of P(si) in equation (1) sets
the constraints and imposes the presence of a neighbouring defect to facilitate the flip of the
spin si . b is a free asymmetry parameter which allows different kinds of glassy behaviour.
The two limiting cases b = 0 (or equivalently b = 1) and b = 1/2 have been thoroughly
studied [4–9]. The case b = 1/2 corresponds to the symmetric one where the spin si needs a
defect as a neighbour (irrespective of its position, left or right) to flip and leads to ‘strong glass’
behaviour [4]. The case b = 0 corresponds to the fully asymmetric constraint where the spin si

needs a neighbour on its right to flip [5]. As we shall see, a coarsening process with increasing
energy barriers leads to fragile glass behaviour in this case [7]. The more interesting situation
corresponds to intermediate values of b (0 < b < 1/2) [10]. The asymmetry between left
and right neighbours models an entropic barrier. In this case both symmetric and asymmetric
relaxation processes are available and compete, leading to a crossover from fragile to strong
glass behaviour.

3. Relevant timescales

Let us now describe the two relevant processes and corresponding timescales in the symmetric
and fully asymmetric cases before considering the intermediate case 0 < b < 1/2.

3.1. Symmetric dynamical rules: b = 1/2

In the symmetric case, two different timescales τ0 and τ1 are involved for the relaxation of a
defect (at equilibrium). If one of the neighbours is also a defect, the spin si relaxes easily and
the corresponding timescale is the microscopic one τ0 ∼ 1, independently of the temperature.
If the defect is isolated (without any neighbouring defects) two possible relaxation processes
may occur using successively right and left neighbour defects (or vice versa)

010→ 110→ 100 (2)

010→ 011→ 001. (3)
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These processes correspond to the motion of the isolated defect with a diffusion rate � ∼ e−1/T

(due to the intermediate creation of a new defect). Thus the corresponding timescale
τ1 = 1/� ∼ e1/T . The relaxation time, the largest of the two times τ0 and τ1, follows
an Arrhenius law typical of a strong glass with an energy barrier �E = 1

τS ∼ e�E/T = e1/T . (4)

3.2. Fully asymmetric dynamical rules: b = 0

In the purely asymmetric case, the dynamical constraints are maximal and only right neighbours
may facilitate the evolution of a spin. As a consequence, the symmetric process involving both
left and right neighbour defects is no longer available. In fact, it is possible to show that
different timescales τn appear for the relaxation of a defect depending on the length l of the
chain of spins 0 on its right. For a length l = 0 the right neighbour is also a defect and there
is no dynamical constraint. The timescale τ0 ∼ 1 is independent of the temperature. For a
length l = 1 the timescale is τ1 ∼ e1/T and corresponds to the following process

101→ 111→ 011→ 001 (5)

involving an energy barrier �E = 1.
More generally, for a length l with 2k−1 � l < 2k , the system has to overcome an energy

barrier �E = k to relax the defect and thus the corresponding timescale is τk ∼ ek/T [7]. It is
easy to understand why energy barriers only grow logarithmically with the length l from the
relaxation process corresponding to a length l = 3

10001→ 10011→ 10111→ 10101→ 11101

00001← 00011← 00111← 00101← 01101←↩
(6)

which overcomes an energy barrier of k = 2.
As we have seen, the timescale to flip a defect depends on the distance to the next defect

on its right. In equilibrium, the average distance between defects is leq = 1/ceq ∼ e1/T . Using
this typical length we obtain the following relaxation time [7]

τAS ∼ exp

(
ln leq

T ln 2

)
= eA/T 2

(7)

with A = 1/ ln 2.
The timescale τAS displays an exponential inverse temperature squared behaviour (or

Bässler law behaviour [11]) characteristic of a fragile glass and used as an alternative to the
Vogel–Fulcher law [12, 13]. The same timescale will be recovered later when discussing the
persistence functions.

3.3. Asymmetric dynamical rules: 0 < b < 1/2

The symmetric and fully asymmetric processes compete in the intermediate case. The
symmetric process is constrained by the small value of the asymmetry parameter b and the
diffusion rate � is modified accordingly (� ∼ b(1− b)e−1/T ) leading to

τS(b) ∼ e1/T [b(1− b)]−1 = e�E/T +�S (8)

with the energy barrier �E = 1 and an entropic barrier �S = − ln[b(1−b)] coming from the
asymmetry parameter. Assuming additivity of the rates we deduce the following relaxation
time

τI (T , b) = (
τ−1

AS + τ−1
S (b)

)−1
. (9)
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For high temperatures the asymmetric process dominates due to the entropic barrier in the
symmetric timescale. For low temperatures the symmetric process becomes dominant due to
the fragile behaviour of the asymmetric timescale. The crossover temperature

Tc(b) �
√

1 + 4�S/ ln 2− 1

2�S
(10)

corresponds to τS(b) = τAS and depends on the asymmetry parameter through the entropic
barrier.

4. Equilibrium properties

Due to the non-interacting variables, equilibrium properties are known exactly and as a
consequence we are able to explicitly construct low-temperature equilibrium configurations.
This allows us to study numerically the equilibrium dynamics down to really low temperatures
in contrast with most of other glassy systems where only out of equilibrium quantities are
accessible.1

4.1. Correlation functions and relaxation time

The relaxation time τ may be extracted from the equilibrium correlation function (normalized
to [0, 1]):

Ceq(t) =
〈si(t)si(0)〉 − c2

eq

ceq − c2
eq

(11)

where 〈· · ·〉 = (1/N)
∑

i (· · ·) stands for the spatial average. In order to determine τ we used
the usual relation Ceq(τ ) = 1/e assuming an exponential decay of the correlations.

Examples of equilibrium correlation functions for different values of the asymmetry
parameter b at the temperature T = 0.25 are shown in figure 1. In the symmetric case,
the correlation decays mainly as an exponential (except for long times where the recurrence
of defects affects the exponential decay). In the fully asymmetric case a stretched exponential
would be better suited. This may affect the determination of the relaxation time and will be
discussed later in more detail when studying the persistence functions. In the intermediate
case, the correlation starts following the asymmetric case before an exponential behaviour
takes place for longer times.

As can be seen in figure 2, the time τ agrees with the predicted relaxation time τI . An
Arrhenius law is obtained for the symmetric case. In the fully asymmetric case a quadratic
behaviour is seen, but the prefactor A = 1/ ln 2 (see equation (7)) is not exactly recovered.
The non-exponential behaviour of the correlations affects the definition of the time τ and may
explain this discrepancy. Finally, in the intermediate case, the timescale switches from the
fragile behaviour to the strong one at the finite temperature Tc(b). Notice that below this
temperature the timescale can be rescaled by b(1 − b) to remove the b dependence of the
relaxation time τI � τS (see upper right panel of figure 2).

In the lower right panel of figure 2, we plot the effective energy barrier �E =
d ln τ(T )/d(1/T ) which displays a linear behaviour for the asymmetric case and gives the
expected constant energy barrier �E = 1 for the symmetric case. The crossover from fragile to
strong glassy behaviour is more and more pronounced as the asymmetry parameter b decreases.
1 We performed numerical simulations using a usual continuous time Monte Carlo algorithm [14] with the Metropolis
rule and the dynamical constraints. The system sizes considered ranged from 105 to 5×106 spins and the temperatures
from T = T (b) to∞, with T (b = 0.5) = 0.1 and T (b = 0) = 0.25, for the equilibrium simulations. Averages over
10 to 20 runs were performed.
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Figure 1. Equilibrium correlation functions for different values of b at T = 0.25.
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Figure 2. Relaxation time as a function of the inverse temperature 1/T for different values of
the asymmetry parameter b (left). Rescaled relaxation time b(1 − b)τ (upper right) and effective
energy barrier (lower right) as a function of the inverse temperature.

4.2. Persistence and stretched exponential

The persistence is the fraction of defects present in the initial configuration and which have
never flipped up to the time t :

P(t) = c−1
eq

〈 t∏
t ′=0

si(t
′)
〉
. (12)
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This quantity is strongly related to the correlation but is free of the problem of the recurrence
of defects which affects the long time behaviour.

In the symmetric case, the persistence may be approximated by the sum of the two possible
relaxations of the defects with timescales τ0 and τ1 corresponding respectively to a defect with
and without a neighbouring defect. Assuming those relaxations are exponential

PS(t) � 2ceqe−t/τ0 + (1− 2ceq)e
−t/τ1 (13)

where 2ceq is the probability of a defect havig another defect as a neighbour (and neglecting
higher orders in ceq ∼ e−1/T ). The short time behaviour is mainly given by the fastest
exponential decay leading to − ln PS � ceqt/τ0 = t/τ̃ with τ̃ ∼ τ0e1/T for low temperatures.
The long time behaviour is given by − ln PS � t/τ1. Both regimes are apparent exponential
decays with timescales following an Arrhenius law: τ̃ ∼ τ1 ∼ e1/T .

In the asymmetric case, the probability of flipping a defect depends on its distance to the
next defect on the right. In equilibrium, the distribution of those lengths is independent of
time. The persistence may then be approximated by the sum of the exponential relaxations of
the defects with different lengths l

PAS(t) � ceqe−t/τ0 +
∞∑

k=1

pke−t/τk (14)

with pk = (1 − ceq)
2k−1 − (1 − ceq)

2k

the probability for a defect to have a chain of spins 0
of length l with 2k−1 � l < 2k on its right. Each term in the sum corresponds to a particular
energy barrier and timescale. The equilibrium condition is crucial for assuming an independent
relaxation of those defects. If this condition is not satisfied, the distribution of lengths evolves
in time and the approximation considered is no longer valid.

The small time behaviour is similar to the symmetric case: − ln P(t) ∼ t/τ̃ . The long
time behaviour may be estimated by replacing the sum by an integral and using a saddle point
approximation, following Palmer et al [15]. At this point it is interesting to note that the fully
asymmetric model falls into one of the classes described in [15]. As a result we obtain a
stretched exponential behaviour:

PAS(t) ∼ exp
[− (t/τAS)

β
]

(t � 1) (15)

with τAS the asymmetric relaxation time previously discussed and β = 1/(1 + 1/T ln 2) the
temperature-dependent stretching exponent.

Let us now discuss the intermediate case. At small times the persistence decay is dominated
by the asymmetric process due to the entropic barrier for the symmetric one. For really small
times the behaviour is analogous to an exponential decay with a timescale τ̃ ∼ e1/T even
though this decay comes mainly from the relaxation process with timescale τ0 ∼ 1. The
temperature dependence is due to the small prefactor ceq ∼ e−1/T . At intermediate times
we expect a stretched exponential to occur with the stretching exponent β. At large times
the symmetric process is dominant and leads to an exponential behaviour with a timescale
τS(b) ∼ e1/T +�S .

Figure 3 represents the persistence decay for different temperatures and for two particular
asymmetry parameters (b = 10−3 and 10−5). A double logarithmic scale for the persistence
and a logarithmic one for the time have been used to obtain straight lines in the case of
stretched exponential behaviour. In both cases the three different regimes are clearly seen and
the predicted stretching exponent is observed. The width of the intermediate regime depends
on the asymmetry parameter and is larger for smaller b. The insets show that the small and
large time regimes superimpose when the time is rescaled to te−1/T , as expected.



Crossover from fragile to strong glassy behaviour 1505

10
−4

10
1

10
6

time

10
−5

10
−3

10
−1

10
1

−
 ln

 p
er

si
st

en
ce

2=T
−1

3
4
5

10
−4

10
1

10
610

−6

10
−4

10
−2

10
0

2=T
 −1

4
6
8

Figure 3. Persistence for different temperatures: (left) b = 10−5 and (right) b = 10−3. Dotted
curves are the expected stretching exponents β. Insets: same persistence with a rescaled time
t ′ = te−1/T .

5. Out-of-equilibrium properties

We now discuss some out-of-equilibrium properties. We concentrate on one-time quantities
such as the defect concentration. A complete study of two-time quantities like the correlation
and the response functions as well as a discussion of the fluctuation dissipation theorem is left
to a forthcoming paper.

5.1. Defect concentration and plateaux

Starting at t = 0 with an infinite temperature initial configuration and then quenching the
system to a low temperature leads to a complicated structure with different plateaux in the
decay of the defect concentration towards the equilibrium value. As an example, we plot
in figure 4 the defect concentration decay for different asymmetry parameters and a quench
temperature T = 1/6.

In the symmetric case the unique energy barrier leads to a unique plateau. The first decay
(up to this first plateau) corresponds to a temperature-independent decay to a configuration
where mostly all defects are isolated. The zero-temperature dynamics is independent of the
asymmetry parameter and has been solved exactly [6]. The second decay is a diffusion–
annihilation process for the defects with a diffusion timescale τ1 ∼ e1/T related to the processes
described in equations (2) and (3). Thus, this second decay behaves as c(t) ∼ (t/τ1)

−1/2 until
the concentration reaches the equilibrium value. The upper dashed line in the inset of figure 4
reflects the t1/2 behaviour of the average distance between defects, l(t) = 1/c(t).

In the asymmetric case each energy barrier leads to a plateau due to the corresponding
well-separated timescales τn ∼ en/T . At least four different plateaux are visible in figure 4. The
average length behaves as tT ln 2 as shown by the lower dashed line in the inset of figure 4 [7].

In the intermediate case (0 < b < 1/2) the defect concentration follows the curve for the
asymmetric case up to τS(b) = en∗/T with

n∗ = 1 + T �S (16)
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a temperature T = 1/6 for different values of the asymmetry parameter b. Inset: average distance
between defects l = 1/c. The upper dashed line reflects the t1/2 behaviour and the lower dashed
line the tT ln 2 one.

giving the last stage of the asymmetric relaxation that is observed. This value n∗ determines
the number of plateaux in the defect concentration decay as a function of the asymmetry
parameter. For T = 1/6 we observe the expected number of plateaux in figure 4: three
plateaux for b = 10−5 (n∗ = 2.9), two for b = 10−4 and 10−3 (n∗ = 2.5 and 2.2) and only
one for b = 10−2 (n∗ = 1.7).

6. Discussion and conclusion

In conclusion we have presented a simple model where the competition between two dynamical
processes, one with increasing energy barriers and the other with a unique energy barrier but
also an entropic barrier, leads to a crossover from a fragile to strong glassy behaviour as
the temperature is lowered (see also [16] for a phenomenological theory). The crossover
temperature depends on the tunable entropic barrier. In the fragile regime, a stretched
exponential relaxation is predicted with a temperature-dependent stretching exponent.

The entropic barrier is put into this model by hand through an unphysical asymmetry of
the dynamical rules. This drawback can be cured in a symmetric model. Let us consider
the asymmetry parameter b(t) as a time-dependent field which takes values b = {0, 1}. The
physical origin of this field could be the existence of macro- or mesoscopic regions in the
system where new independent variables order (like magnetic moments near the ferromagnetic
transition) and influence the dynamical behaviour of the microscopic spins si . Those regions
would evolve on a timescale τP, the simplest example being a Poisson flipping process. With
a mean value 〈b(t)〉 = 1/2 there is no global breaking of the symmetry in the dynamical
rules. This argument is then easily generalized to systems in higher dimensions, where the
field would be a vector field.
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Figure 5. Persistence functions for different values of the Poisson timescales τP at T = 0.25.

In this new model the system behaves as in the asymmetric case, and thus shows fragile be-
haviour, on timescales smaller than τP. On timescales larger than τP, the asymmetry parameter
b(t) oscillates and the spins only feel the average value 〈b(t)〉 = 1/2 leading to the symmetric
or strong glass behaviour. The timescale τP replaces the factor [b(1− b)]−1 in the symmetric
timescale τS(b). The persistence functions plotted in figure 5 show explicitly this crossover
from the asymmetric (τP = ∞) to the symmetric behaviour for different timescales τP.
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[5] Jäckle J and Eisinger S 1991 Z. Phys. B 84 115
[6] Crisanti A, Ritort F, Rocco A and Sellitto M 2001 J. Chem. Phys. 113 10 615
[7] Sollich P and Evans M R 1999 Phys. Rev. Lett. 83 3238
[8] Schulz M and Trimper S 1999 J. Stat. Phys. 94 173
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